
Korean 31 Chem. Eng., 16(3), 325-330 (1999) 
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Abstract-The stability of isothermal spinning of viscoelastic fluids which have strain-rate dependent relaxation 
time has been investigated using the linear stability analysis method. The instability known as draw resonance of 
tile system was found to be dependent upon tile material functions of tile fluids like fluid relaxation time aid tile 
strain-rate dependency of the relaxation time as well as upon the draw-down ratio of the process. Utilizing the 
filndamental physics of the system characterized by the traveling kinematic waves, we also have developed a sim- 
ple, approxinlate nlethod for determiniug tiffs draw resonance instability ; it requires only tile steady state velocity solu- 
tions of the system, in contrast to the exact stability analysis method which requires solving the transient equations. 
The stability curves produced by this simple, fast method agree well with those by the exact stability method, 
proving the utility of the method. The stability of other extensional deformation processes such as film casting 
mid film blowing Call also be analyzed using tile method developed ix tiffs study. 
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I N T R O D U C T I O N  

Tile stability of polynler processing is very important in many 
respects. First, it is one of the most important subjects to the 
people who mn the polymers manufacturing facilities, because 
along with tile sensitivity of tile process to outside disturbances 
it is always related to the safety, productivity, product quality, 
and ultimately to the profitability issue of the concern. Sec- 
ond, stability is always of tile fHst interest to dleoreticians who 
study the fimdamental aspects of nonlinear dynamic systems like 
existence and uniqueness of the solutions, possibility of oscil- 
lation, bifurcation and chaos, etc. Third, due to the intricate nature 
of the polymer materials in their structure, and their flow and 
defonnation behavior, tile dynanlics of most polylner process- 
ing is extremely complicated [Petrie and Denn, 1976]. 

Thus the stability of continuous processes of  polymer pro- 
cessing like fiber spinning, film casting, film blowing, calender- 
ing, pnltmsion, etc. has long been an exciting subject for many 
researchers around die world. But it was 1960s when tile fH-st 
attempt was made regarding this stability issue in the fiber spin- 
ning field [Kase and Matsuo, 1965; Matovich and Pearson, 1969]. 

Then it became inmlediately clear that even in dlis seem- 
ingly simple fiber spinning, the complexity of the dynamics in- 
volved is inlmense. Tile three dinlensional ilaUne of dynam- 
ics, the ph~e  changes occurring inside the fiber, the difficulty 
in modeling the stress variables in the amorphous/crystalline 
stmctta-e, complex heat transfer with die heat of crystalliza- 
tion, tile inertia effect in high speed spirming, viscoelasticity of  
polymer melts, nonlinear constitutive equations, etc. are such 
examples, to name just a few [Avenas et al., 1975; Tsou and 
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Bogue, 1985; Ziabicki and Kawai, 1985; SpruieU et al., 1991]. 
Against the backdrop of all these fiber spinning details, the 

necessity of a stability study of spirming has remained strong. 
This is because of two main reasons. One is that as the knowl- 
edge level of spinning advances, the fundamental understanding 
of file process dynanlics, such as its stability, becomes even more 
important. The other is the fact that other polymer processing 
like film casting and film blowing, where extensional deforma- 
tion donlinates, possesses basically file same dynamics as spin- 
ning, so that extensional phenomena like draw resonance, which 
is characterized by a sustained oscillation in tile fiber radius and 
spinline tension, is equally impol-tarrt in all these processes [Fisher 
and Denn, 1976; White and Ide, 1978; Hyun, 1978; Cain and 
Delta, 1988; Anturkar and Co., 1988; Kiln et al., 1996]. 

In this study, the draw resonance stability of the isothermal 
spinning of convected Maxwell finds which possess swain-rate 
dependent relaxation time has been studied. First, the linear 
stability analysis method is employed to study the characteris- 
tics of tile stability of tile system including tile effects of mate- 
riN fianctions like fluid relaxation time (elasticity) and the strain- 
rate dependency of the relaxation time. Next. a simple, approxi- 
mate method for deterlninmg tile same stability has also been 
derived based on the fimdamental physics of spinning i.e., the 
fact ti~at spinning is a hyperbolic process possessing various kine- 
matic waves traveling the spinline including the throughput waves. 
The stability curves obtained by this approximate method are 
seen to agree well with die exact ones generated by tile linear 
stability method, proving die utility of tile method as a useful 
analysis tool in extensional deformation processes. 

P R O C E D U R E  OF LINEAR STABILITY ANALYSIS  

Tile goveinmg equations of file isothermal spinning of con- 
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vected Maxwell fluids in this study are as follows [Avenas 
et al., 1975; Ide and White, 1977; Beris and Liu, 1988] ; a 
schematic drawing of  the melt spinning process is shown in 
Fig. 1. 

Equation of  continuity : 

aA, a(AV) 
~----gT-- = u (1) 

Equation of motion : 

~-z [A(o-= o-,0] = 0 (2) 

Constitutive equation : 

+ ~(~176176176 2o- ~ 2GZO_-_ V <~ a~.37- -b-Tz = ~ ) =  ~ (3) 

+~(&Z.%. &Z.,.+ a V ) =  GzOV 
c~,.,. "~k-~;- v-gT- z c~,,7~z) 8z (4) 

Strain-rate dependent material relaxation time [Ide and White, 
1977] : 

1 +~.g~o~ (5)  

Boundary conditions : 

the point of  extrudate swell, meaning that all the pre-spinneret 
deformation history of the fluid is not included in the model. 

All these assumptions were adopted in order to simplify the 
model and to focus on the extensional deformation which con- 
stitutes dominant dynamics in spinning. 

Parameter g of  Eq. (5) represents the strain-rate dependency 
of material relaxation time which was first introduced by Ide 
and White [1977] and then extensively used by Minoshima 
and White [1986] in both theoretical and experimental ana- 
lyses of  various extensional deformation processes. 

In order to qualitatively illustrate the draw resonance phe- 
nomenon, Fig. 2 is provided here showing the transient be- 
havior of the cross-sectional area at the take-up at three differ- 
ent values of  the draw-down ratio. When the draw-down ratio, 
r, is larger than its critical value, i.e., r_>r~, the draw resonance 
is clearly established as steady oscillations with distinct peri- 
ods and its severity increases with increasing r, whereas if r 
is smaller than r~, the system is stable with all disturbances 
dying out with time. 

Now the usual steps of  linear stability analysis are follow- 
ed. First, the nondimensionalization of the above governing 
equations is in order. 

Equation of continuity : 

c?a+c?(av) 
Z -TU =~ (8) 

A-Ao, V-Vo, c~=-~, at z -0  for all t '  (6) 

V-Vr-rVo at z - L  for all t' (7) 

(The notations appearing here are given in the Nomenclature.) 
In the above, the following assumptions have been incor- 

porated. First, the whole model is in one-dimensional format, 
meaning that the distance coordinate is the only independent 
space variable. Second, all the secondary forces on the spin- 
line, i.e., inertia, gravity, air drag, and surface tension, are ne- 
glected. Third, the origin of  the space coordinate is chosen at 

Molten polymer I ~ * ~ 1  
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Spinline draw-down 

Take-up 

Fig. l. Schematic diagram of  the melt spinning process. 

where, t-tWo/L, x z/L, a A/Ao, v V/Vo 

Equation of motion : 

a[a(~,, r,.j] =0 

(9) 
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Fig. 2. Transient response of  the dimensionless area at the take- 
up. 
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where, r,~=ff=A~/F, r~,,=~,AjF 

Constitutive equation : 

(, + - ~  av~+~ (3~+ ar~ ~ av~_~ av 

(11) 

(12) 

+g c)v + 3z;,+ 3z;,+ & c)v 
~;,(1 4rJDeoO--Vx) De(--~ v~-Tx T,,~a~x) = g~x 

where, De=ZoVjL, g=GZoAo/F 

Boundary conditions: 

a=l,  v=l,  r==g at x=0 for all t 

v=r at x=l for all t 

(13) 

(14) 

(15) 

(16) 
where r~ is a specified value of stress at the spinneret which 
rams out to be relatively unimportant in determining the dy- 
namics of spinning process. 

Next these dimensionless equations are lmearized and then 
the perturbations are introduced to the dependent variables as 
follows. 

a(t,x) = a~(x)+ c~(x)e ;~ (17) 

v(t,x) v0(x)+fl(x)e ;~ (18) 

r~ (t,x) = r~,~(x) + y(x) e -~' (19) 

r~(t,x) ~;,(t,x) r~,~(x) ~;,,~(x)+a(x)e ~'' v~(x)+a(x)e ~'' (20) 

The subscripts s indicates steady state, c~, ~, g and a are the 
perturbed quantities and 22 is a complex eigenvalue that ac- 
counts for the g r o ~ h  rate of the perturbation. 

Insertion of these perturbed variables into the above dknen- 
siouless linearized equations produces the following linear equa- 
tions. 

Equation of continuity : 

(@)6 (1)fl (21) g2~=( v~' )~ (v~)o?+ v~ 1 , 

Equation of motion:  

, , v~' 1 , 

Constitutive equat ion 

(23) 

22~$: (-(1 +g,~5)v:-1)6-(v=)~$'+ ( 3 v : ) > v :  )/3 

3g + (3 r,,,~ + ~-~-( 1 +'~,4~')v~ )~ (24) 

Boundary conditions: 

~(0) fl(0) /3(1) ~(0) 0 (25) 

In the above equations, superscript ' denotes &/Ox. 
Discretizing and rearranging the above equations, the follow- 

ing algebraic linear matrix equation is obtained. 

22y =_Ay (26) 

where, y= [~4,~4,...,yu, &, 6,, &,..., &] r 

A is (2N§ 2N+l) matrix whose componerls are determined 
from the algebraic manipulations of Eq. (21)-(25) and N is the 
number of mesh points m the discretized s p ~ g  distance fioln 
spinneret to take-up. 

Given all the parameters and boundary conditions, the eigen- 
values of Eq. (26) can be readily obtained. Table 1 shows such 
results of the real and imaginary parts of the eigenvalue when 
the values of the &-aw-down ratio and material functions are 
given. Here it is immediately noticed that the values of criti- 
cal draw-down ratio at the onset of draw resonance are readi- 
ly obtained by finding their values, which makes the real pars 
of the largest eigenvalue equal to zero. The stability curves sep- 
arating the stable and unstable regions in the parameter space 
are also readily obtained from the data in Table 1. 

Fig. 3 shows such stability curves portraying the effect of 
material functions and process conditions. Specifically, the Deb- 
orah number, De, representing the dimensionless material relax- 
ation time and the draw-down ratio, r, are describing the stabil- 
ity regions here along with the stt-ain-rate dependency parame- 
ter, -~. 

A N  A P P R O X I M A T E  M E T H O D  F O R  
D E T E R M I N I N G  T H E  S T A B I L I T Y  O F  S P I N N I N G  

Now that the stability diagram of the isothermal spinning of 
convected Maxwell finds has been obtained using the linear 
stability analysis method as shown m Fig. 3, the next subject 
is the approximate method for determining the same stability. 
This method was developed based on the fundamental phy- 

Table 1. The real and imaginary parts of  the eigenvalues for the system having ~ =0.4 and De =0.02 

Draw-down ratio (r) 
1 't eigenvalue 2 ~d eigenvalue 3 ~d eigenvalue 

15 (stable) 0.533 12.826 2.949 31.066 4.509 49.264 
20.237 (critical) 0 13.762 -2.639 33.588 -4.359 53.515 
30 (unstable) 0.638 15.119 2.626 37.492 4.694 60.235 
50 (m~stable) 1.131 17.338 -4.147 45.121 -6.925 73.568 
70 (unstable) 0.595 19.404 7.599 54.469 10.892 89.525 
77.811 (critical) 0 20.229 -9.611 59.008 - 13.198 97.042 
85 (stable) -0.821 20.995 -11.906 63.805 -15.663 104.824 
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Fig. 3. Stability diagrams of various eonveeted Maxwell fluids 

by linear stability method. 
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Fig. 4. Approximate stability diagrams corresponding to the 
same case of Fig. 3. 

sics of spinning process, and the details have been reported by 
Jung et al. [1999] (An approximate method for determining 
the stability of film casting processes was developed utilizing 
the same concept of traveling times of throughput waves and the 
fluid residence time which was previously used to derive the 
draw resonance criterion in fiber spinning [Kim et al., 1996]). 
Hence here only the final equation of the method at the onset 
point of draw resonance is reproduced as follows. 

2(t,+-~)~r, at r=r~ (28) 

where k-dimensionless traveling time of throughput waves, At- 
dimensionless time difference between the spinline force and 
the throughput wave at the take-up, rr-dimensionless fluid re- 
sidence time. 

The fluid residence time is obtained from the steady state 
velocity solution by the following equation. 

i, dx r, = - -  (29) 
) V 

where v-dimensionless spinline velocity, x-dimensionless spin- 
ning distance from the spinneret. 

Eq. (28) is further approximated by the following expression 
which was first used by Hyun [1978]. 

2(lr--~)~r, at r=rc (30) 

This is the final approximate criterion equation for draw re- 
sonance which thus predicts stability or instability of the sys- 
tem according as the left hand side is greater or smaller than 
the right hand side, respectively. Solving this equation is rather 
simple because the fluid residence time is always readily ob- 
tainable from the steady state velocity solution of the system 
[Jung et al., 1999]. 

Fig. 4 shows the stability results thus obtained using Eq. (30). 
Despite the approximations introduced in the course of deriv- 
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ing this equation, these results agree well with the exact ones 
of Fig. 3. The utility of the approximate method has thus been 
demonstrated here. In other words, without having to obtain 
transient solutions of the spinning equations of Eqs. (8)-(16), 
the method provides a quick means to determine the stability 
of the spinning process approximately. 

DISCUSSIONS 

Now the results of Table 1, Fig. 3 and Fig. 4 are further dis- 
cussed. First, other than the fact that the data of Table 1 show 
the way to find the critical draw-down ratio at the onset of 
draw resonance, one more point is worth mentioning here. The 
period of the draw resonance oscillation at the onset point is 
easily obtained from the imaginary part of the eigenvalue as 
shown below. 

(imaginary part of the eigenvalue)-27r/T (31) 

where T-period of draw resonance. 
The above relation holds only at the critical draw-down ratio 

because harmonic oscillations are possible only at the onset of 
draw resonance, while at higher draw-down ratios the oscilla- 
tions become skew as shown in Fig. 2. 

Table 2 shows the periods of draw resonance at the onset 
obtained using Eq. (31). These values exactly coincide with 
those obtained by nonlinear simulations of the system, i.e., tran- 
sient solutions of the governing equations of Eqs. (8)-(16). 

From Fig. 3, the effects of two parameters, i.e., Deborah 
number, De, and the strain-rate dependency of the relaxation time, 
fi-, on the stability are seen to be interrelated to each other. In 
other words, depending on whether the parameter g is larger or 
smaller than 1/,,/3, the effect of the relaxation time or equiv- 
alently Deborah number here, is drastically different. First, if 
has a value smaller than 1/,,~, there are two stable regions sep- 
arated by the in-between unstable region, whereas if 5 is larger, 
only one stable region. Second, if g is smaller, there exists a 
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Table 2. Periods of draw resonance at the onset point for the 
system having g=0.4 and varying De 

Deborah Critical Imaginary part Period of draw 
number ch-aw-doml of the largest resonance 

(De) ratio ( re )  eigenvalue (*Q,) (T) 

0 (Newtoniaz~) 20.218 14.008 0.449 

0.001 19.951 13.891 0.452 
0.005 19.642 13.674 0.459 

0.01 19.233 13.627 0.461 

0.02 20.237 13.762 0.457 
0.02 77.811 20.229 0.311 

0.01 207.337 29.411 0.214 

0.006 388.692 38.416 0.164 
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deformation are distinctly different from each other. An approx- 
imate raethod for cletemfining the stability has also been applied 
to the same system to prcxtuce the stability curves which are close 
to the exact ones despite the approximations incorporated in the 
derivation of the raethod. This approximate method fflus is view- 
ed as a useful tool with which to analyze and design extensional 
defommtion processes like fllln castkg and film blowing as well 
as the spinning processes, from which the method was origi- 

nally derived. 
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maxJmum Deborah number beyond which there is no unstable 
region, whereas if a is larger, there is no such critical Debo- 
rah number existing. Third, as Deborah number increases, the 
systera becomes less stable when E is larger than 1/4g5 , but the 
stability of the system remains unaffected when a is smaller. 

Assessing what has been described above, we can see that 
there is a dichotomy of the fluids depending on their stability 
behavior in spinning, i.e., finds having smaller values of g and 
those larger values of a .  This dichotomy is not new in that 
there have been many research results in the last couple of de- 
cades reporting the similar differences [Petrie and D e l ~  1976; 
Mmoslmna and White, 1986; MC~lstedt and Laun, 1981; Hyun, 
1989; Lee et al., 1995]. Such examples include the existence 
of large vortices in contraction flow by LDPE as opposed to 
small vortices by HDPE, the inultiplicity of flow rates at con- 
stant wall shear stress in capillary flow by HDPE as opposed 
to none by LDPE, the necking behavior by HDPE as opposed 
to none by LDPE, and large strain-hardening in extensional 
deformation by LDPE as opposed to a small one by HDPE. 

As raentioned above, the agreement between the stability cur- 
ves in Fig. 3 and Fig. 4 is considered good with rather small 

numerical discrepancies in spite of the fact the approximate 
method of Eq. (30) was obtained incorporating a couple of  
approximations. Since this approximate method only requires 
a steady state velocity solution to detennine the critical di-aw- 
down ratio at the onset point of draw resonance, this method 
is a useful tool to analyze the stability of not only the spin- 
nmg process but also other extensional defonnation processes 
like film casting [Juug et al., 1999] and film blowing. 

C O N C L U S I O N S  

The exact stability curves of isothemral spinning of convect- 
ed Maxwell fluids have been obtained using the linear stabil- 

ity analysis method. The stable and unstable regions thus de- 
picted in the diagram of the draw-down ratio and Deborah 
number reveal the effect of the system parameters of the fluid 
elasticity and sb-ain-rate dependency of the relaxation tnne on the 
draw resonance stability. Particularly, the strain-rate dependency 
of the relaxation time has mined out to dichotomize the vis- 
coelastic fluids into the two groups whose betkavior in flow and 

N O M E N C L A T U R E  

A : spinline cross-sectional area 
A : eigenvalue matrix 
a : dimensionless spinline cross-sectional area 
g pa rame te r  representing the strain-rate dependency of 

raaterial relaxation times 
De : Deborah number 

F : spinline tension force 
O : raaterial raodulus 
L �9 spinning distance between the spinneret and the take-up 
N : number of mesh points in the discretized spinning dis- 

tance coordinate 
r : draw-down ratio 
rc : critical draw-down ratio 
T : period of draw resonance 
t : dimensionless time 
t' : t ime 
tL : dimensionless traveling time of throughput waves 
At : dilnensionless tnne difference between the spfffline force 

and the throughput wave at the take-up 

V : spinline velocity 
v : dilnensionless spinline velocity 
x : dimensionless distance from the spinneret 
y : eigenvector 
z : distance from the spinneret 

Greek Letters 
c~ : perturbed quantity related to spinline cross-sectional area 

fl : perturbed quantity related to spinline velocity 
:perturbed quantity related to spinline axial stress and 

radial stress 
7 : pm~rbed  quantity related to spinline axial stress 
Z : material relaxation time 
Z~ : material relaxation time when no strain-rate is applied 
o'= : spinline axial stress 
o'~ : spinline radial stress 
z= : dimensionless spinline axial stress 
Zrr : dimensionless spinline radial stress 
zz : dimensionless fluid residence time 
~2 : eigenvalue 
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s : real part of  eigenvalue 
s : imaginary part of eigenvalue 

Superscript 
' : differentiation with respect to x, ?/?x 

Subscripts 
0 : values at the spinneret 
C : values at critical (onset) point of  draw resonance 
L : values at file take-up 
S : values at steady state 
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